Challenges in Infrastructure-as-Code

Efficiency, Decentralization and Formalization

by Hélene Coullon (IMT Atlantique, Inria, LS2N - Nantes, France)

on 2025-06-18, Lille
DisCoTec-wide Keynote

VN’

IMT Atlanti q
retagne-Pays de
Eco\e Mines- ﬁléeom

I\ Nantes
W7 Université

[1/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 00000000

» Outline
Infrastructure-as-Code

Efficiency

Decentralization

Safety

Opening

[2/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 00000000

» Past

+ Since 2016 Associate professor at IMT
Atlantique

+ 2020-2022 20% Adjunct professor at the
Arctic university of Norway, Tromse

« 2016-2021 Inria research chair

N
. P
IMT Atlantique 7 < £ 2
Bretagne-Pays de la Loire &z % N
Ecole MinesTélécom Lo e o ¥
INVENTEURS DU HONDE NUMERIQUE ut

[3/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
©00000000000000 000000000000 0000000 00000 00000000

Infrastructure-as-Code

« Distributed software systems and their deployment
« Infrastructure-as-Code

« (oordination and declarativity in la

« Autonomic laC

[4/50]

Infrastructure-as-Code

» Service-Oriented (SO) Distributed systems (DS)

A —.)— B w E: Cw

[

’D‘ E W '—C.— D w '

Loose coupling
components

Use/provide interfaces for
composition

[5/50]

Infrastructure-as-Code

» Service-Oriented (SO) Distributed systems (DS)

Microservices architecture - Online boutique

A w _.)_ B w t: Cw Q

User loadgenerator

| HITP TP
frontend checkout

.)‘ Ew '—c.— D w

Loose coupling
Components productcataog | shipping | | currenc v ‘

Use/provide interfaces for
composition

https://github.com/GoogleCloudPlatform/microservices-demo

Infrastructure-as-Code

» Service-Oriented (SO) Distributed systems (DS)

nnnnnnnnnnnnnnnnnnnnnnnnnnn

OpenStack [aaS operating system
A —.)— B w t: Cw - £ :r

.D‘ Ew '—C.— D w

Loose coupling
components

Use/provide interfaces for
composition

Designing and writing such SO systems: CBSE, SOA,
micro-services architectures, etc.

[5/50]

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

Infrastructure-as-Code

» Deploy and operate SODS

Distributed systems live on distant machines or platforms

Machine i Machine | Machine |
A)—‘ Bw }—0)— Cw
—@
_.)_l E w D w
Machine i Machine k-

AWS AWS GKE
AW ’—.)—‘ Bw e C w
L
—e Ew LCF D w
AWs GkE

[6/50]

Infrastructure-as-Code

» Whyis it complex?

www

webaPP

Twinkle, Twinkle, Little Star

N PO
-
Twin - Ke, twin - Ke, It - tle stor,
3
=
I won - der what you are

I £
Z "

database v

a - bove the word so high

ke o do-mond I the sky
9 c < N B
5
==

Twin - ke, twin - K, - de stor,

[7/50]

Infrastructure-as-Code

» Whyis it complex?

[7/50]

Infrastructure-as-Code

» Whyis it complex?

De“j

+ operate

[7/50]

Infrastructure-as-Code
» Whyis it complex?

FAERIES AIRE and DEATH WALLZ
(from “A Tribute to Zdenko G. Fibich”)

+ operate

[7/50]

Infrastructure-as-Code

» Infrastructure-as-Code
Infrastructure

Infrastructure refers to the software, platform, or hardware that delivers or
deploys applications [3]

[8/50]

Infrastructure-as-Code

» Infrastructure-as-Code

Infrastructure

Infrastructure refers to the software, platform, or hardware that delivers or
deploys applications [3]

Infrastructure-as-Code
See infrastructure deployment and management as programs or codes

programming languages (DSL)
versioned infrastructures
testable infrastructures
shareable infrastructures

[8/50]

Infrastructure-as-Code

» Infrastructure-as-Code in practice

F’rovn;lonnina ‘Q

Node & machine
configuration

Operate infFrastructure

W
dock
Sl —>| ln?:lle;;PP Conglaure app Integrate apps I—} Operate app
& @ Nomad
Puppet CHEF
= kubernetes

YU
e
AN
Pulumi

N
=l

Terraform

[9/50]

Infrastructure-as-Code
000000@00000000

» Ansible

0N U R WN P

Efficiency

Decentralization Safety

000000000000 0000000 00000

— name: Common setup

hosts

roles:

- name: Install database server

hosts

roles:

roles/common/tasks/main.yml

main.ym|

— name: copy file
ansible.builtin. copy:
src: /tmp/file.txt
dest: /tmp/file.txt
— name: apt Install
ansible.builtin.apt:
name: "python3"
state: present

roles/database/tasks/main.yml

- nane: @atabase)

tasks:
— name: get db
ansible.builtin.get_url:
url: "https://example.com/database.tar.gz"
dest: "/tmp/database.tar.gz"
- name: extract db
ansible.builtin.unarchive:
src: '"/tmp/database.tar.gz"
dest: "/opt/database"
remote_src: yes

Opening
00000000

[10/50]

Infrastructure-as-Code
©000000

» Ansible

Machines
SSH, Python

User Ansible CLI Modules
ANSIBLE ANSIBLE
M ansible-playbook ... L common, copy file, all o
[-mmmmmm oo J—l‘ common, apt Install, all 'I—I‘

ssh sudo apt install T
ssh sudo apt install

[10/50]

Infrastructure-as-Code
0®00000

» Terraform/OpenTofu

User ..‘ Terraform CLI .H‘

. (OpenTofu CLI)

1 resource "openstack_compute_instance_v2" "A" {
2 ‘ # attributes for instance A

3}

4 resource "openstack_compute_instance_v2" "B" {
5 # attributes for instance B

6 depends_on = [A]

7)

8 resource "openstack_compute_instance_v2" "C" {
9 # attributes for instance C

10 ‘ depends_on = [A]

1} || ||

[11/50]

Infrastructure-as-Code
0®00000

» Terraform/OpenTofu

User

Ny

Terraform CLI

terraform plan/apply

..’ Terraform Plugin Infrastructure
. (OpenTofu CLI) . OpenStack OVH
(A)Create
e Create e Create E i
CREATEA L AP call nova boo 1 U
i i nova boot
_____________________________ ‘commands
: API call nova boot 2 :
CREATE B // CREATE C o AP call nova boot 3 o
i i nova boot
_____________________________ commands

[11/50]

Infrastructure-as-Code
000000

» Kubernetes

User

apiVersion: vl

Kubernetes CLI

kind: Pod
metadata:
name: nginx
labels:
app: nginx
role: webserver
containers:
- name: nginx
image: nginx:1.14.2
ports:

— containerPort: 80

[12/50]

Infrastructure-as-Code
00®0000

» Kubernetes

Master node

| apiserver % Controllers ! % Worker nodes
Kubemetes CLI | (etcd) scheduler : Kubelet

kubectl apply : , , ,
—_—

> |:| notification through watch (pods) D H
e H
! notification through watch (pods) !

>
> create
containers

“Kubernetes in action”, Marko LukSa*

https://sutlib2.sut.ac.th/sut contents/H173702.pdf

[12/50]

https://sutlib2.sut.ac.th/sut_contents/H173702.pdf

Infrastructure-as-Code
0008000

» Comparison

Coordination Actions Actuators
Ansible sequence+spmd | modules modules + ssh
Terraform | DAG of actions | CRUD plugins + APIs
Kubernetes | embarassingly CRUD | controllers + apiserver + kubelet

[13/50]

Infrastructure-as-Code
0000800

» Declarative laC
Terraform and Kubernetes are declarative languages!

Specify what is wanted, not how to get it!

[14/50]

Infrastructure-as-Code
0000000

» Declarative laC

Terraform and Kubernetes are declarative languages!

Specify what is wanted, not how to get it!

I want music that sounds magical

"TEMBRE AU CINEMAT]

Hogwart's Hymn
o o Parrick Duyle

IS SSS R eh s
e
www?wt»f" IESTS === =i
o PP e Lrir

mgy.vj:j' 5 '\J\JJ]JJ SN

ve pe £ itz p fhplpp o e

B i e e e e e

R e T

wm;u_ s e
Rle==i= fres \rbfi'\rr”fir' A
s

[14/50]

Infrastructure-as-Code
000000

» Declarativity: a matter of state and plan

.H‘ Qetcd .v

Afstate | apiserver manifests

Current Desired
State .. g . State

planner : controller

Planner

Actions

Apn

plugins | apiserver/kubelet

i., . setcd

[15/50]

Infrastructure-as-Code
0000000

» Comparison

Coordination | Actions Actuators Declarative
Ansible sequence modules modules + ssh X
Terraform DAG CRUD plugins + APIs v
Kubernetes | embarassingly | CRUD | controllers + apiserver v

[16/50]

Infrastructure-as-Code
°0

» Autonomic laC (reconfiguration)

M = Monitor
M A ’ A = Analyze
s . _ P = Plan (Declarativity)
3 Sy & E = Execute
=
0 @ K = Knowledge
W - ‘\
’ Orchestration tools achieve the full
E F P ‘ reconciliation loop for specific cases like
\] auto-scaling, or faults.

“The vision of autonomic computing” Kephart et. al., 2003[1]

[17/50]

oe

» Comparison

Coord. | Actions | Actuators | Declarative | mapek
Ansible sequence | modules | mod. + ssh X E
Terraform DAG CRUD plugins v PEK
Kubernetes | embar. CRUD | controllers v MAPEK

[18/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 ©00000000000 0000000 00000 00000000

Efficiency

« Why efficiency?
* Concerto
+ How to make Concerto declarative?

[19/50]

Efficiency
000

» Why efficiency?

1. Mitigate or recover quickly from a critical situation

% faults, unavailabilities
% security issues

[20/50]

Efficiency
000

» Why efficiency?

1. Mitigate or recover quickly from a critical situation

% faults, unavailabilities
% security issues

2. Quickly reach the new desired state
x performance, QoS, QoE

[20/50]

Efficiency
000

» Why efficiency?

1. Mitigate or recover quickly from a critical situation

% faults, unavailabilities
% security issues

2. Quickly reach the new desired state
x performance, QoS, QoE

3. Accelerate the deployments and change of large systems

[20/50]

Efficiency
0®0

» Why efficiency?

Minimal OpenStack deployment
+ 11 services

mem remote
mm local
mmm cached
)

o

£ 263 256

£

152 148
0.29 0.31 _

ansible aeolus concerto

& Artifacts Grid’5000
Up to 70% gain compared to Ansible

During release periods OpenStack can
be deployed hundreds of times a day

[21/50]

https://gitlab.inria.fr/VeRDi-project/madeus-journal
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Efficiency
0®0

» Why efficiency?

Minimal OpenStack deployment
+ 11 services

mem remote
mm local
mmm cached

)
o
£ 263 256
£

152 148
0.29 0.31 _

ansible aeolus concerto

& Artifacts Grid’5000
Up to 70% gain compared to Ansible

During release periods OpenStack can
be deployed hundreds of times a day

Reconf. multi-site OpenStack
+ OpenStack Summit 2018
+ Galera cluster of DB

3 20

H 10
Size of the cluster

& Artifacts Grid’5000
Up to 40% gain compared to Ansible

[21/50]

https://gitlab.inria.fr/VeRDi-project/madeus-journal
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Decentralization

Infrastructure-as-Code Efficiency
e 00 [SleYer Jo

» Parallelism in reconfiguration

facts.deploy | ’5’&2:&38!8%
. roidli i
com.deploy neva.feg?stdehr
Va.up

| m -upapid
hap.deploy nova.create do
ol ronva il
mem.deplay neutron.depioy
neutron.register
mdb.deploy | HEEN 2 neutran config
5 neutron. pul
1 mem.deplo;
rma.deploy mb.ciiec
mdb register
résta
kst.deploy L mdb. bd%uéstrgﬁ
confi
mdb.pul
glance.deploy | kst.de;ﬁoi/
P e
E—— EARE
nova.deploy Jance-deploy
. glance.register
ovs.deploy glance contig
fac(s,de;ﬁo‘/
neutron.deploy —’ com b depley

0 100 200 300 200 500 0 50 100 150 200 250 300

Time (s) Time ()

[22/50]

Efficiency

ooe
» Parallelism in f@[ﬂﬂﬁgurﬂtiﬂﬂ
] rma.deploy
facts.deploy ovs.deploy
= nova el i
com.deploy noya register
ova:up

hap deploy 1 noVaereReb d
| | nove pul
nova.conf
mem.deploy neutron:deploy
neutron.register
o mabdepioy | M- o PSR ICORE
g £ neutron.pul
2 1 £ memdeplo
% rmadeploy % "mdbchec
s 5 mdnrenat
£ kstdeploy L & mdb.poststrap
Ty
glance.deploy | & deb‘?oi/
it
nova.deploy Jance-deploy
N glance.register
ovs.deploy slance cont
fatts deploy
neutron.deploy —’ comsﬁrg'gggI%

0 100 200 300 400 500 0 50 100 150 200 250 300

Time (s) Time (5)

Reconfigurations are DAGs (Directed Acyclic Graphs) of (system) actions

However,
« Life cycle abstraction is required for developers, DevOps, and (P)
+ Flexible enough abstractions to not lose opportunities for parallelism

[22/50]

Efficiency
©0000

» Concerto - Control components Programmable life cycle with fine-grained dependencies

[
f Written by the component developers

Internal net: Models the life cycle of a component
places = milestones
transitions = concrete actions to perform

database service

Interfaces
ports (CBSE)
% use ports = requirements
* provide ports = provisions
* during execution: active/inactive
uninsiled seapend behaviors (subset of transitions)
server * actions on the life cycle

database_ip

[23/50]

Efficiency
0e00

» Concerto - Reconfiguration language Interact with the components’ life cycles

[]
% Used by DevOps, or a declarative tool

(reate assemblies and make them evolve at runtime (CBSE)
+ add/delete a component instance
+ connect/disconnect two component instances

[24/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000008000000 0000000 00000 00000000

» Concerto - Reconfiguration language Interact with the components’ life cycles

[]
% Used by DevOps, or a declarative tool

(reate assemblies and make them evolve at runtime (CBSE)
+ add/delete a component instance
+ connect/disconnect two component instances

« push a behavior to the behavior queue on a component instance
+ wait for a given component instance or wait for all components

[24/50]

Efficiency
o

» Deployment example

add(server: Server)

add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)

wait(server)

(o] lele)

behaviors: I

rrunning W

database

database_ip

uninstalled

server: Server

service

install
suspend

[25/50]

Efficiency
o

» Deployment example

add(server: Server)

add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)

wait(server)

(o] lele)

behaviors: . behaviors: .
(running rrunning W

>).
D))

service database service

allocated
ip
database_ip
undeployed deploy
maintain
db: Database
uninstalled install
suspend

server: Server

[25/50]

Efficiency
00000

» Deployment example

behaviors: . behaviors: .
(running running
>).
D))
service database service

add(server: Server)

add(db: Database) allocated -
con(server.database_ip,db.ip) *

con(server.database,db.service) database_ip
pushB(server,install)

deploy
pus‘hB(db,dGPIOY) undeployed maintain
Walt(Sef‘Ver‘) db: Database

install

uninstalled

suspend

server: Server

[25/50]

Efficiency
00000

» Deployment example

bohaumm. behaviors .
(running running
>).
D))
service database service

add(server: Server)

add(db: Database) allocated -
con(server.database_ip,db.ip) *

con(server.database,db.service) database_ip
pushB(server,install)

deploy
pu§hB(db,dep|0y) undeployed | T
Walt(SerVer) db: Database

install

uninstalled

suspend

server: Server

[25/50]

Efficiency
00000

» Deployment example

bohaumm. bmauors’.
(running running
>).
D))
service database service

add(server: Server)

add(db: Database) allocated -
con(server.database_ip,db.ip) *

con(server.database,db.service) database_ip
pushB(server,install)

deploy
pu§hB(db,dep|0y) undeployed | T
Walt(SerVer) db: Database

install

uninstalled

suspend

server: Server

[25/50]

Efficiency
o

» Deployment example

add(server: Server)

add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)

wait(server)

(o] lele)

bohavmr:,l behaviors .
(running (running w
[> D)
service database service
allocated
ip
database_ip
undeployed deploy
maintain
db: Database
uninstalled install
suspend

server: Server

[25/50]

Efficiency
o

» Deployment example

add(server: Server)

add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)

wait(server)

(o] lele)

bohavmr:,l behaviors |
(running (running w
® > D)
service database service
allocated
ip
database_ip
undeployed deploy
maintain
db: Database
uninstalled install
suspend

server: Server

[25/50]

Efficiency
0000

» Maintenance example

mmom- behaviors -
(running running
° D ® °

service database service

pushB(db,maintain) allocated _
pushB(db,deploy) ®)\.
pushB(server,suspend) database_ip
pushB(server,install)

wait(server) nceoyed | 99

db: Database

install

uninstalled

suspend

server: Server

[26/50]

Efficiency
0000

» Maintenance example

maum,- behaviors -
(running (running w
[> D

service database service

pushB(db,maintain) allocated _
pushB(db,deploy) ®)\.
pushB(server,suspend) database_ip
pushB(server,install)

wait(server) nceoyed | 99

db: Database

install

uninstalled

suspend

server: Server

[26/50]

» Maintenance example

pushB(db,maintain)
pushB(db,deploy)
pushB(server,suspend)
pushB(server,install)
wait(server)

Efficiency
o

e]e] o)

behaviors: -

allocat

behaviors -

N Y
4)
service database service
ed
ip
database_ip
undeployed deploy
maintain
db: Database
uninstalled install
suspend

server: Server

[26/50]

Efficiency
[elelelel)

» Leveraging Concerto in Ansible

The CoAnsible project (INRIA transfer action)

Additional
specikications
with new language

[27/50]

Efficiency
®00

» How to make Concerto declarative? Principle

+ inputs: current state of the system (M) + reconfiguration goals (A)

x set of behaviors to execute on designated components
* constraints on the final state of ports

« output: a Concerto reconfiguration program

* pushB requests
* walt commands

+ About creations/deletions/(dis)connections

* usual to handle topological changes before and after behavioral requests
and synchronizations (e.g., deployment)

Problem formulation
Find a valid (optimal) schedule of pushB and wait instructions

[28/50]

» Maintenance example

Goal

behaviors:
- component: db
behavior: maintain
components:
- forall: running

pushB(db, maintain)
pushB(db, deploy)
pushB(server, suspend)
pushB(server, install)
wait(server)

Efficiency

m‘\‘a/mft,- behaviors -
(running (running w
® > D)
service database service
allocated
ip
database_ip
undeployed deploy
maintain
db: Database
uninstalled install
suspend

server: Server

[29/50]

» Maintenance example

Goal

behaviors:
- component: db
behavior: maintain
components:
- forall: running

pushB(db, maintain)
pushB(db, deploy)
pushB(server, suspend)
wait(db)

pushB(server, install)
wait(server)

Efficiency

m‘\‘a/mft,- behaviors -
(running (running w
® > D)
service database service
allocated
ip
database_ip
undeployed deploy
maintain
db: Database
uninstalled install
suspend

server: Server

[29/50]

Efficiency
ooe

» Leveraging Concerto in Terraform?

Offering programmable life cycles instead of fixed CRUD in Terraform

[30/50]

Efficiency
ooe

» Leveraging Concerto in Terraform?

Offering programmable life cycles instead of fixed CRUD in Terraform

+ New plugin framework for programmable life cycles

+ The planner of Terraform should be replaced with our planner

+ The execution of Terraform (apply) should be able to use the Concerto
library

[30/50]

Efficiency
ooe

» Leveraging Concerto in Terraform?

Offering programmable life cycles instead of fixed CRUD in Terraform

+ New plugin framework for programmable life cycles

+ The planner of Terraform should be replaced with our planner

+ The execution of Terraform (apply) should be able to use the Concerto
library

More difficult than CoAnsible?

[30/50]

Infrastructure-as-Code Efficiency Decentralization
000000000000000 000000000000 ©000000

Decentralization
* Why decentralization?
+ From Concerto to Ballet

Safety
00000

Opening
00000000

[31/50]

Decentralization
®00

» Fault-tolerance of laC tools

tfstate

ANSIBLE

Hetcd .

Controllers/apiserver

[32/50]

Decentralization
®00

» Fault-tolerance of laC tools

tfstate

Beted

Controllers/apiserver

[32/50]

Decentralization
®00

» Fault-tolerance of laC tools

=4 D e
: L e e

netcd

Controllers/apiserver

oeted (&)

[32/50]

Decentralization

» Fault-tolerance of IaC tools
(cm Y g N e

netcd

Controllers/apiserver

oeted (&5)

[32/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 00®0000 00000 00000000

» Resilience of aC tools

I think the answer is “no”

[33/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 ©0®0000 00000 00000000

» Resilience of laC tools

1. At the Edge or in constrained CPS, disconnection is the norm
+ any distant central node is regularly unreachable (but still alive)

I think the answer is “no”

[33/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 ©0®0000 00000 00000000

» Resilience of IaC tools

1. At the Edge or in constrained CPS, disconnection is the norm
+ any distant central node is regularly unreachable (but still alive)

2. Facing extreme climatic events, the edge of the network could be highly
impacted, resulting in potentially long network partitioning

I think the answer is “no”

[33/50]

Decentralization
0e0

» Resilience of aC tools

Only a matter of replication?

At the Edge or in constrained CPS, disconnection is the norm
+ any distant central node is regularly unreachable (but still alive)

Facing extreme climatic events, the edge of the network could be highly
impacted, resulting in potentially long network partitioning

In Cross-DevOps organizations [2], a central state and management is
unwanted (security, privacy, size)

I think the answer is “no”

[33/50]

Decentralization
ooe

» Decentralized MAPE-K

- — \
M A > P » E
= 7 : A
e
_ — Y,
A
Cloud Providerg, machines, etc.

[34/50]

Decentralization
ooe

» Decentralized MAPE-K

| v i
Worker | D Worker |

[34/50]

» From Concerto to Ballet

.

» |«

M

<—

3
>

Full decentralized MAPE-K: ANR SeMaFoR (WP leader, led by Thomas Ledoux)

Ballet = Decentralized P & E (declarative)

[35/50]

Decentralization
oo

» Concerto-D Decentralized Concerto

Concerto-D vs Concerto
+ local add/del
+ local con/dcon
+ communications: synchronized dcon
+ local pushB

+ identified pushB
* communications: statuses of ports

+ wait for local or distant components
+ communications: end of behaviors

Local progress is possible + less to achieve when the node is back

[36/50]

Decentralization
ocoe

» Decentralized planner

interrupt

Local constraint programming model

s 123 45 Propagation with gossip-like algorithm
common Received messages enrich local models

haprox: X X ¢ X X oy .
e « additional behaviors
* walt instructions

service v X X X X

vt Final consensus: end of the propagation

& Artifacts on Grid’5000 Execution is started with Concerto-D

Deployment and update of multi-site OpenStack [1, 2, 5, 10] sites
40% (deployment) and 24% (update) gain compared to Mjuz
Planning time is less than 2% of the execution time

10 sites: ~200 constraints and ~100 instructions inferred

[37/50]

https://zenodo.org/records/10472116

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 00000000

Safety

« Why safety?
« erification
« Formally verified Infrastructure-as-Code

[38/50]

» Why safety?

Support the Guardian

Fund in nt journalism fo r year

News Opinion Sport Culture Lifestyle e

World Europe mericas Asia Australia Middle East Africa Inea

@ This article is more than 11 months old

Google Cloud accidentally deletes
UniSuper's online account due to
‘unprecedented misconfiguration’

Super fund boss and Google Cloud global CEO issuc joint

statement for ‘extremely
disappointing outage
Follow our Australianews live blog for latest updates
et our ils, free app or
daily news podcast

Safety
°

“Google Cloud CEO, Thomas Kurian has confirmed that the disruption arose
from an unprecedented sequence of events whereby an inadvertent
misconfiguration during provisioning of UniSuper’s Private Cloud services

ultimately resulted in the deletion of UniSuper’s Private Cloud subscription,”
the pair said.

[39/50]

Safety
°

» Why safety?

Support the Guardian
Fun ar

Opinion Sport Culture Lifestyle e

“Google Cloud CEO, Thomas Kurian has confirmed that the disruption arose
Superannuation © Thi aticl s more than 11 months old from an unprecedented sequence of events whereby an inadvertent
Google Cloud accidentally deletes misconfiguration during provisioning of UniSuper’s Private Cloud services

UniSuper's online account due to ultimately resulted in the deletion of UniSuper’s Private Cloud subscription,”
‘unprecedented misconfiguration’ the pair said

Google CEO issuejoint
ising for ‘extremely i

Follow our Australianews live blog for latest updates
ils, free app or

daily news podcast

Services and infrastructures configurations are critical (day-to-day
organization, health, energy, network, etc.). Configuration is difficult.

Formal methods: mathematically rigorous techniques for specifying, verifying,
and synthesizing software systems

[39/50]

Safety
(1}

» Verification of a deployment Restricted to initial deployments
Concerto deployment Properties | : a
T } writes]

1 1 Reconf. dev.

[TimePN compiler] [TCTL compiler]

Model Checker

Qualitative properties
+ deployability (inevitability)

+ sequentiality (observer
subnet)

+ forbidden (observer subnet)

+ quantitative properties
[40/50]

Safety
(1}

» Verification of a deployment Restricted to initial deployments

C T ! []
iConcerto deployment Properties - A
L } writes]

1 1 Reconf. dev.

[TimePN compiler‘} [TCTL compiler}

Model Checker Translator

Qualitative properties

deployability (inevitability) Scalablity issues

sequentiality (observer Unfeasible for (full) Concerto programs?
subnet) Same issue with FOL and SMT
forbidden (observer subnet) — synthesizing correct programs (declarativity)

+ quantitative properties
[40/50]

Safety
oe

» Mechanized semantics of Concerto and Concerto-D

Formal specification of the language (instead of a program)
Ambiguities (problems) can be discovered and resolved in the language
Mathematical reference to guide development
Basis to reason and verify more general properties (any program)

Operational semantics of Concerto and Concerto-D

Pen-and-paper semantics of Concerto
Mechanized semantics of Concerto/Concerto-D

+ Maude rewriting system
* Going to ITP

[41/50]

Safety
°

» ANR For-Coala

Documentation

Reverse

Engineering

Ansile
Datasets

[42/50]

Safety
°

» ANR For-Coala

Documentation

Reverse

Engineering

UAnsible

Formal
semantics
UAnsible

[42/50]

» ANR For-Coala

Documentation

Reverse

Safety
°

Engineering

l_—== UAnsible
Formal 7
semantics im:;i;f:i 7/
UAnsible

_ (UAnsible |
| code |

v

Ansile
Datasets

[42/50]

» ANR For-Coala

00 ¥
Documentation Ansible
Reverse -
Engineerin .
A * Ansible
J’——== UAnsible [FDatosets
iy Verified UAnsible
A interpreter code
UAnsible P

Safety

4 Another project

CoAnsible |
Output
state of
the system
S
Concerto
I/ \
‘OCaml
UCoAnsile |
\idiidizazdig

[42/50]

» ANR For-Coala

T00 23
Documentation Ansible
Reverse s
Et erin .
) ¥ Ansible
I Ansible .,_‘:n Datasets
Form?‘ Verified UAnsible
N interpreter code
UAnsible P

Safety
°

_4 Another project

[/
ocaml

CohAnsible |

Concerto

i

UCoAnsible

Then verify general theorems on Ansible and CoAnsible!?

2https://for-coala.github.io/about/

Output
state of
the system

[42/50]

https://for-coala.github.io/about/

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 ©0000000

Opening

[43/50]

Opening
0@000000

» ICTs are critical infrastructures

ICTs (digital infrastructures) are critical infrastructures

+ Other critical infrastructures now rely on ICTs: energy, health,
telecommunications, etc.

+ ICTs are more and more prominent in our daily life: banks, industries, etc.

[44/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 0@000000

» ICTs are critical infrastructures

ICTs (digital infrastructures) are critical infrastructures

+ Other critical infrastructures now rely on ICTs: energy, health,
telecommunications, etc.

+ ICTs are more and more prominent in our daily life: banks, industries, etc.

Like all critical infrastructures, ICTs face vulnerabilities and crises that have
to be studied, mitigated, and avoided

[44/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 0@000000

» ICTs are critical infrastructures

ICTs (digital infrastructures) are critical infrastructures

+ Other critical infrastructures now rely on ICTs: energy, health,
telecommunications, etc.

+ ICTs are more and more prominent in our daily life: banks, industries, etc.

Like all critical infrastructures, ICTs face vulnerabilities and crises that have
to be studied, mitigated, and avoided

Which crises?

[44/50]

Opening
00®00000

» Which crises?

Climate change

* humidity, fired, heat/cold waves,
flooding, etc.

Depletion of natural resources
* energy sources, water, metals
(Geo)political instability

* access to natural resources,
hardware, software

[45/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening
000000000000000 000000000000 0000000 00000 00000000

» Fluctuating resources

Fluctuation of resources

Which resources?

% energy resources
+ network-specific resources

* connectivity, frequencies
+ hardware resources

« CPUs, GPUs, RAM, disk, antennas
etc.

+ software resources
% services, operating systems etc.

[46/50]

Opening
0000000

» [aCin the face of fluctuating resources

+ IaC for crises
+ unavailability of part of infrastructures
« priorities of infrastructure resources
* stochastic model of resources
* high heterogeneity of resources
* etc.
« IaC resilience to crises
* decentralized IaC
* local-first IaC
+ Safety aspects of resiliency
x formal properties of resiliency?
* absorption/mitigation/recovery

[47/50]

Opening
00000@00

» Persons involved in the presented contributions and projects

EFficiency /
C. Perez C. Prudhomme [ADT Inria CoAnsible]
DRIna D.Perin M.Chardet S.Robilard J.Phiippe As. Prof. BJongez M. Kacdour
REP Avalon Postdoc PhD St. Postdoc Postdoc IMT Atlantique Rinia Soft. engineer
(4 A

/ Diecenfralizm‘rian / /

9] PhDs
It [] Postdocs
I.Rais A.Omond J.Phiippe
As.Prol PhDst. Postdoc
UIT Norway
/ f}/ 7 [ANR For-CoalLa]
L / F.Loulergue C. Jard Floeie o o
i L. Henrio rof. rof. P, PhD St.
[VeRDI] [PIA OTPaaS] co/Xiae iy Origans Univ. Nantes U oteans

S

D. Lime

M. Chardet S. Robillard rof.
PhD St. Postdoc Centrale Nantes

[48/50]

Opening
00000000

» References

[1] J.O.Kephart and D.M. Chess.
The vision of autonomic computing.
Computer, 36(1):41-50, 2003.

[2] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi.
Automating serverless deployments for devops organizations.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, New York, NY, USA, 2021. Association for Computing Machinery.

[3] Rosemary Wang.
Infrastructure as Code, Patterns and Practices: With Examples in Python and Terraform.
Simon and Schuster, 2022.

Mentioned contributions

-
o

E

=1=]

=]

Jolan Philippe, Antoine Omond, Héléne Coullon, Charles Prud’homme, Issam Rais. Fast Choreography of Cross-DevOps Reconfiguration
with Ballet: A Multi-Site OpenStack Case Studly. In IEEE SANER 2024, Finland

Farid Arfi, Héléne Coullon, Frédéric Loulergue, Jolan Philippe, Simon Robillard. A Maude Formalization of the Distributed
Reconfiguration Language Concerto-D. In ICE@DisCoTeC 2024, Groningen, The Netherlands

Simon Robillard, Héléne Coullon. SMT-Based Planning Synthesis for Distributed System Reconfigurations. In FASE 2022, Munich,
Germany

Maverick Chardet, Héléne Coullon, Simon Robillard. Toward Safe and Efficient Reconfiguration with Concerto. SCP, 2021
Maverick Chardet, Héléne Coullon, Christian Perez. Predictable Efficiency for Reconfiguration of Service-Oriented Systems with
Concerto. In CCGrid 2020, Melbourne, Australia

Hélene Coullon, Didier Lime, Claude Jard. Integrated Model-checking for the Design of Safe and Efficient Distributed Software
Commissioning. In iFM 2019, Bergen, Norway

[49/50]

OOOOOOOO

» Thank you for your attention!

Infrastructure-as-Code
Efficiency

Decentralization
Safety

Opening

[50/50]

	Infrastructure-as-Code
	Efficiency
	Decentralization
	Safety
	Opening

