
AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

FOR-COALA: Formalization of Configuration Languages

Summary table of persons involved in the project

Partner Name Firstname Position Role & resp. in the project Effort
(p.m)

IMTA Coullon Hélène Associate
Professor

Project leader, leader for WP0, WP3, WP4 24.0

IMTA Not Known, PhD Student to be hired
in the project

Contributes to all work packages but mainly
WP3 and WP4

36.0

IMTA Not Known, Master Student to be hired
in the project

Contributes to WP2 and WP3 6.0

LIFO Loulergue Frédéric Professor Partner leader, leader for WP1, WP2 19.2
LIFO Not Known, Post-doctoral researcher

to be hired in the project
Contributes to WP0, WP2, WP3 24.0

LIFO Not Known, Intern then Engineer to be
hired in the project

Contributes to WP0, WP1, WP2 11.5

LIFO Not Known, Intern then Engineer to be
hired in the project

Contributes to WP0, WP2, WP3, WP4 11.5

Figure 1: Summary table of persons involved in the project

CONTENTS

1 Proposal’s context, positioning and objective(s) 2
1.1 Objectives and research hypotheses . 2
1.2 Position of the project as it relates to the state of the art . 4
1.3 Methodology and risk management . 6

1.3.1 Methodology . 6
1.3.2 Risk Management . 8
1.3.3 Work-Packages . 8

2 Organization and implementation of the project 15
2.1 Scientific coordinator and its consortium . 15
2.2 Implemented and requested resources to reach the objectives . 16

3 Impact and benefits of the project 17

4 References related to the project 19

1

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

1 PROPOSAL’S CONTEXT, POSITIONING AND OBJECTIVE(S)

1.1 OBJECTIVES AND RESEARCH HYPOTHESES

Context. Large distributed software systems (applications or infrastructures) are now ubiquitous, with component-
based systems (e.g., service-oriented architectures or microservices) offering a convenient way to structure large
systems, in particular distributed systems deployed in the Cloud, in the core, or at the edge of the network. In-
deed, isolating functionalities in components and building systems through composition greatly enhances the
adaptability and scalability of systems, two important requirements for many organizations.

However, the advantages of distributed architectures come at the price of increased complexity and techni-
cal challenges related to observability, coordination, maintenance, etc. A set of operations denoted as DevOps
— i.e. operations handled somewhere in between the developer and the machine administrator – includes no-
tably the system configurations and reconfigurations that are required to achieve adaptability. These operations
include the initial and dynamic changes that may occur on a distributed service-oriented software architecture:
adding or removing services, connecting or disconnecting services, and changing some parameters or the inter-
nal behavior of services [1]. They may be required to handle various kinds of dynamic scenarios such as fault
tolerance, scalability, software updates, various optimizations, etc.

Such changes may lead to faults. For example, recent outages have been traced back to problems within
maintenance codes12. A study of 597 unplanned outages that affected popular cloud services between 2009
and 2015 found that 16% of them were caused by a software or hardware upgrade [2]. The study concludes
that “the complexity of cloud hardware and software ecosystem has outpaced existing testing, debugging, and
verification tools”. Indeed, testing and debugging methods are largely inadequate in the context of distributed
systems, while the adoption of more suitable formal methods remains marginal in industry. The latter can be
attributed to the difficulty of using formal methods and tools. Yet formal methods can lighten the burden of
program developers, DevOps engineers, and system administrators instead of adding to it.

Motivation. On the one hand, many configuration tools and languages exist in the DevOps community, some
of them being specific to the provisioning of resources in Cloud providers, packaging problems, containerized
deployments, configuration management of applications or infrastructures, etc. Such languages are often re-
ferred to as Infrastructure-as-Code (IaC for short). IaC languages offer easier constructs than low-level scripts
to facilitate software engineering properties such as composition and reuse. The main advantage of these tools
is their full integration and adoption in the DevOps community. Their disadvantage is they lack both formal and
textual specifications. Moreover, their contours are blurred. On the other hand, many initiatives have been stud-
ied in academia to contribute to the deployment, configuration, and reconfiguration of distributed software [1],
bringing improvements such as expressivity, speed, safety, etc. Many come with precise and sometimes formal
definitions. However, they lack the breadth of the mainstream DevOps tools.

In the domain of programming languages, the COMPCERT C formally verified compiler [3] can be used
as a trustworthy compiler by users not versed in formal methods. COMPCERT shows that formal semantics
of languages can have an impact beyond their initial target, including the verification of automatic analysis
tools [4] that can be used to improve the quality of source code. But COMPCERT also shows that such a success
is only possible when a large subset of a real-world language is considered. Although sometimes imprecise or
ambiguous, there exists a standard textual specification of the C language. This is not the case for mainstream
DevOps tools: each language is defined by its unique implementation. In this context, having an executable
formal semantics allows one to easily compare it to the implementation, during the design of such a semantics.
It also provides verified interpretation, via code extraction from formalizations.

1https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
2https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/

2

https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Research problem and project objectives.

The goal of FOR-COALA is twofold: (1) understand and bridge the gap between a popular tool
from the DevOps community and a tool from academia; (2) improve the understanding of these
languages based on mechanized formal semantics and develop verified semantic-preserving cross-
language transformations. The outcomes of the project will be two open source formally certified
configuration languages, their execution engine, and a verified translation tool.

Some projects have been initiated by academia to improve or change the way of configuring systems, appli-
cations, or infrastructures. However, most of them are outdated or not under active development or maintenance
anymore [5, 6]. We have decided to restrict our study to the recent and active tool CONCERTO for the following
reasons. First, CONCERTO is currently the tool that offers the highest parallelism level when executing con-
figuration programs, hence offering lower configuration and reconfiguration durations [7]. For this reason, it
is currently attracting attention from industrial partners, in particular OVH and Orange. Second, the execution
semantics of CONCERTO has been manually formalized [8]. Third, a tool on top of CONCERTO adds declara-
tive features to CONCERTO by automatically inferring (by using the SMT solver Z3) the configuration program
from a set of higher-order DevOps goals or objectives [9]. In other words, CONCERTO offers recent and active
contributions with a strong basis for mechanized formalization. From the academic tool perspective, the re-
search challenge of FOR-COALA is to cope with complex additional language features compared to industrial
tools, particularly the high level of parallelism (non-determinism) offered by CONCERTO.

From the industry tool perspective, we chose ANSIBLE3. First, ANSIBLE is currently one of the most widely
used tools, probably because of its very wide spectrum (from low-level scripting to high-level modular and
compositional features) and low requirements for installation (it is agentless unlike PUPPET, another popular
tool). Second, an extensive set of ANSIBLE playbooks (i.e. ANSIBLE programs) and roles (i.e., a set of
programs to configure a given application or system) are publicly available online and can be leveraged in
FOR-COALA. Third, CONCERTO and ANSIBLE have already been compared and share common aspects that
will facilitate a cross-language transformation. The research challenge is to identify and formalize the subset of
ANSIBLE, so that it is sufficiently powerful to answer the needs of companies while keeping the formalization
tasks doable within the FOR-COALA project’s timeframe.

The project has three specific objectives and two objectives aimed at maximizing the project’s impact:

• Obj1: offering a certain level of certification in the configuration management language ANSIBLE;
• Obj2: bridging the gap between industrial and academic DevOps tools;
• Obj3: alerting the community on ambiguities in the mainstream language ANSIBLE and offering certified

tools with clear semantics that corresponds to industrial needs;
• Obj-Progress: progressing beyond the state of the art;
• Obj-Visibility: making visible and disseminating the project results.

Success criteria. To evaluate the project and if the above objectives are reached, we define six success criteria
as follows:

• SC1: Ability of the resulting certified tools to offer guarantees on DevOps procedures;
• SC2: Ability of the resulting certified tools to answer industrial real use-cases;
• SC3: Ability to semi-automatically and formally switch from a popular DevOps tool to an academic tool

that offers additional performance features;

3https://www.ansible.com

3

https://www.ansible.com

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Additional success criteria will be used for Obj-Progress and Obj-Visibility:

• SC4: Publication of the results in top-level academic conferences and journals in software engineering and
formal methods (ICSE, FM, ASE, ETAPS, DiscoTeC, TSE, FAC, JLAMP, JSS, etc.) and research reports;

• SC5: Participation and presentations at seminars, workshops, and national working group meetings inter-
ested in software engineering, formal methods, and distributed systems (e.g. GDR GPL, GDR RSD);

• SC6: Participation and presentations at major conferences of the DevOps open source community such as
“Config Management Camp”, “KubeCon”, and “OpenInfra Summit”, as well as maintaining a technical blog
and code contributions.

1.2 POSITION OF THE PROJECT AS IT RELATES TO THE STATE OF THE ART

Configuration management languages. As already mentioned IaC languages offer good programming sup-
port and software engineering properties when handling complex DevOps procedures such as (among others)
initial deployments, blue/green deployments, packaging, provisioning in the Cloud, rolling updates, etc. Those
procedures and the exact contour of each IaC language are difficult to classify, but in FOR-COALA we specif-
ically focus on a given class of IaC languages called configuration management languages. Among these
languages are the well-known PUPPET4, CHEF, and ANSIBLE. What is typically called a configuration man-
agement task includes any configuration, deployment, or maintenance task to perform on machines, devices,
virtual machines, etc. With these tools, programs are written by the DevOps on her machine and coordinated
by this machine, and instructions are sent to distant nodes to execute tasks.

A few important concepts have to be introduced to understand these languages. First, some languages
are agentless which means that no specific agents have to be deployed on distant machines. This is the case
of ANSIBLE which exclusively relies on SSH and Python. Second, we can distinguish two types of IaC ap-
proaches, first, imperative or procedural languages where the user writes a program that explicitly prescribes
the set of operations to perform, second, declarative languages where the user declares the desired configura-
tion, and where the tool infers or compiles the associated program(s). ANSIBLE is closer to scripts and thus
quite imperative (e.g., sequence of tasks to execute), while PUPPET and CHEF are more declarative. Finally,
ANSIBLE offers some idempotency informal guarantees on operations, meaning that executing the same AN-
SIBLE operation multiple times results in the same state, thus eliminating the risk of unintended configuration
changes and allowing informal safety and predictability when automating. One can note that idempotency is
not required at the operation level by declarative languages such as PUPPET and CHEF (but may be required at
the user level [10]), as the declarative approach does not directly execute a static program, but computes a pro-
gram from the difference between the current and desired state of the system. In other words with declarative
approaches, if nothing changes, nothing is executed.

Academic approaches on deployment and reconfiguration. In the academic literature, even if not called
IaC languages, automatic deployment, configuration, and reconfiguration of distributed software systems has
been extensively studied, very often under the spectrum of component-based software engineering (CBSE) [1].
When focusing on the DevOps approach, one important aspect is to make a separation between the functional
code of the pieces of software, written by developers, and the fact of deploying and maintaining those pieces
of software, performed by DevOps. For this reason, only a few contributions of the academic literature are
closer to the DevOps tools: the ones focusing on the modeling of the lifecycle of the software components. In
particular, AEOLUS [5], and CONCERTO [8] have been manually formally specified and have been successfully
used on real use cases either for Cloud applications or complex distributed systems. CONCERTO is led by
Hélène Coullon and has been compared to ANSIBLE on the deployment of real OpenStack and Kubernetes
systems. CONCERTO was designed to ensure the coordination of multiple interdependent software entities when

4https://www.puppet.com

4

https://www.puppet.com

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

changing their states, their behaviors, and their relations (i.e., compositions) between each other. CONCERTO

relies on parallel constructs either at the level of one software entity (i.e., component) or between entities to
improve the efficiency compared to the state of the art. ANSIBLE also handles the coordination of some changes
in-between interdependent software entities but with a sequential approach. ANSIBLE additionally comes up
with a set of modules that are programming support on top of bash commands. Such modules are not offered
and are not included in the scope of CONCERTO.

Software quality in DevOps. There are many contributions on tools to improve the quality of configuration
programs (e.g. [11, 12]), but they are neither based on formal semantics nor verified correct using a proof
assistant. Some do rely on a model of the considered DevOps tool but are not formalized in detail. ANSIBLE

has been the subject of a few informal studies. Notably, in [11] are highlighted some ambiguities within
the ANSIBLE language. In particular, the intricate variable precedence rules and the laziness evaluation of
expressions create ambiguities in the value of variables. Three categories of “code smells” are presented:
unsafe reuse of variables, unintentional override of variables, and too high precedence. The authors made
an empirical evaluation of their framework on 19,661 roles extracted from ANSIBLE repositories [13]. This
contribution on ANSIBLE ambiguities, while not being formalized, is very important to consider in WP2 as
such ambiguities should be resolved in a formal semantics of ANSIBLE. The same authors have also presented
an oral contribution relative to the Turing completeness of ANSIBLE at CONFLANG’23 5. ANSIBLE as a
whole is already known to be Turing complete as embedding Python and the full Jinja2 templating framework.
However, in this contribution, the authors show that ANSIBLE Turing completeness relying on a tiny subset
of the core ANSIBLE language: include_tasks, set_fact, when task property, a subset of Jinja2. This
Turing completeness of ANSIBLE will have to be taken into account when selecting the subset of ANSIBLE to
formalize in WP1 and WP2.

To our knowledge, there are only two contributions offering formal semantics of configuration management
languages: SMARTFROG [6] an academic tool (no longer maintained) and µPUPPET [14] a subset of PUPPET.

The semantics of SMARTFROG is a denotational semantics of a compiler for a core SMARTFROG fragment.
From the high-level language SF which contains features such as inheritance, composition, references, etc., the
compilation process produces a store which is basically a tree of attribute-value pairs. These trees are also
the abstractions for system states in SMARTFROG’s semantics. The authors wrote three implementations (in
Scala, Haskell, and OCaml) of the compiler guided by the semantics but not proved correct w.r.t to the formal
semantics (which is not mechanized). These implementations were randomly tested and a few implementation
errors were found. They were also tested against the production compiler: it allowed them to find both a
misunderstanding of the semantics of SMARTFROG and bugs in the production compiler.

The semantics of µPUPPET is operational. An implementation of a µPUPPET compiler exists, guided by
the semantics but not proved correct w.r.t. the formal semantics which is also not mechanized. The output
of the compiler is a catalog which is a structure close to the structure of stores, the output of SMARTFROG’s
compiler. A catalog is also an abstraction for a system state. The provided semantics is a small-step operational
semantics. This design choice was made because the authors would not presume a priori of the semantics
properties. They proved that µPUPPET is deterministic and is monotone. However, the semantics showed that
µPUPPET (and PUPPET) programs are not always terminating and that the order in which variable definitions
appear does have an effect on the result.

We chose to study ANSIBLE rather than building on the existing formalization of PUPPET because of the
expanding notoriety of ANSIBLE, because of the existing comparisons between ANSIBLE and CONCERTO, but
also because that is the tool deployed by the DevOps experts and industrial users of FOR-COALA’s advisory
board.

5https://2023.splashcon.org/details/conflang-2023-papers/3/Ansible-Is-Turing-Complete

5

https://2023.splashcon.org/details/conflang-2023-papers/3/Ansible-Is-Turing-Complete

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Related projects. TARANIS (2023–2030) is one of the 7-year projects of the PEPR Cloud. It targets the
modeling, deployment, orchestration, and optimization of Cloud applications and infrastructure. One of its
objectives is to study the formal aspects of the above challenges. In particular, the two partners of the FOR-
COALA project will co-advise a PhD thesis in TARANIS. The goal of this thesis is to study the formal aspects of
CONCERTO-D, a decentralized version of CONCERTO. Notes that CONCERTO-D, unlike CONCERTO, cannot be
compared to existing mainstream DevOps declarative tools as being fully decentralized, hence the work tackled
in FOR-COALA cannot be applied in Taranis, and the addressed challenges are very different in practice.

The project leader also participates to the “Défi” between OVH and Inria on frugal clouds. Hélène Coullon
is involved in the study of the energy consumption of reconfiguration procedures at OVH. In particular, CON-
CERTO and ANSIBLE are compared in terms of reconfiguration speed and reconfiguration energy consumption.
This work is purely at an engineering level, not at a research level. Indeed, one of the deployment and recon-
figuration procedures at OVH is studied by using the two existing tools. Furthermore, no formal aspects are
studied in this project. Yet, it is clear that this work is useful in FOR-COALA as it compares ANSIBLE and
CONCERTO from an engineering viewpoint. OVH will be part of the advisory board in FOR-COALA.

Two projects related to dynamic adaptation have been accepted to the ANR call AAPG 2023: ADAPT and
SMARTCLOUD.

The goal of SMARTCLOUD (ANR-23-CE25-0012) is to build a Cloud-oriented framework for dynamic
adaptations and reconfigurations of systems in the Cloud. Hélène Coullon is a member of the advisory board
of this project6. The first difference is that SMARTCLOUD exclusively targets the Cloud, while FOR-COALA

targets the well-known DevOps tools ANSIBLE that can be used either for the Cloud or for any configuration
management task on on-premise servers, on small devices, or into a virtual machine, etc. The second difference
is that SMARTCLOUD leverages formal methods to build correct-by-constructions reconfigurations by easing
the way of expressing constraints on the application topology or behavior. In FOR-COALA the main focus is to
provide a formal semantics of the IaC languages ANSIBLE and CONCERTO and verify their implementations.

Although the ADAPT project (ANR-23-CE25-0004) does relate to the general domain of configuration and
reconfiguration, the kind of systems it studies is very different from FOR-COALA and SMARTCLOUD. Indeed,
the context of this project is programmable matter: systems are assemblies of large numbers of small and similar
modular robots. Two aspects important for ADAPT are not considered in FOR-COALA: the hierarchical nature
of the modeling approach as well as the physical aspect of the considered cyber-physical systems.

In 2015, COLIS (ANR-15-CE25-0001) targeted the analysis and verification of shell scripts. One of the
outcomes of this project is a verified interpreter for CoLiS, a shell-like programming language [15]. CoLiS
has notably been used to analyze and check POSIX shell maintenance scripts associated with the package
management in Debian [16]. The goal of the authors was not to replace POSIX with CoLiS but to highlight
problems in those scripts. For instance, with CoLiS syntax errors, non-compliance with the requirements of
the Debian policy, or failure of scripts can be detected. CoLiS could be a useful complementary contribution to
WP2.

1.3 METHODOLOGY AND RISK MANAGEMENT

1.3.1 Methodology

The objectives of the project are ambitious. To achieve the expected results, the project is organized into five
work-packages divided into tasks (see Section 1.3.3). Each work-package is led by one of the two permanent
researchers (see Fig. 1) who will be responsible for the management of the work-package, for solving technical
problems, and for achieving success criterias (SC1 to SC6).

All work-packages (except WP0) require expertise in the DevOps/reconfiguration languages and mecha-
nized semantics formalization. The first domain is the expertise of Hélène Coullon, while the second is the

6https://project.inria.fr/smartcloud/advisory-board/

6

https://project.inria.fr/smartcloud/advisory-board/

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

WP Title Leader Effort, p.m
IMTA LIFO Total

WP0 Management and dissemination IMTA 8,0 5,0 13,0
WP1 Analysis of requirements LIFO 6,0 8,0 14,0
WP2 Formalization of Ansible subsets LIFO 12,0 33,0 45,0
WP3 Formalization of Concerto & tools IMTA 28,0 8,7 36,7
WP4 Semantic preserving transformations IMTA 12,0 11,5 23,5

Total 66 66,2 132,2

Figure 2: Work-packages

WP/Task T0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
WP0

D0.a D0.b D0.c D0.d
WP1

Task 1.1
D1.a

Task 1.2
D1.b

Task 1.3
D1.c

WP2
Task 2.1 v1 v2

D2.a D2.a
Task 2.2

D2.b D2.c
WP3

Task 3.1
D3.a

Task 3.2
D3.b

Task 3.3
D3.c D3.d D3.e

WP4
Task 4.1

D3.a
Task 4.2

D4.b D4.c

Figure 3: Gantt diagram: project work-packages and tasks

expertise of Frédéric Loulergue. This guarantees an active collaboration on all work-packages between the
partners. We have decided to give the responsibility of work packages related to ANSIBLE to Frédéric Louler-
gue and the LIFO. The responsibility of WP3 and WP4 is given to Hélène Coullon as she leads the design and
implementation of CONCERTO and has previously compared it to ANSIBLE.

All technical and organizational problems will be analyzed and discussed jointly during the project progress
meetings. Figure 2 lists the work-packages and each of them indicates the efforts and the leading partner.
The road map is depicted in Fig. 3. WP0 is the administrative work-package devoted to management and
dissemination activities associated with Obj-Visibility. All the deliverables will be made publicly available,
and the code will be released as open-source software. WP1 to WP4 are four technical work-packages and they
all address Obj-Progress. WP1 establishes the requirements for the future solution. In particular, it identifies
cases of real-life industrial code. It will guide the work of the technical work-packages and select a set of case
studies and code patterns that will be the basis for the design and evaluation of our contributions. WP2 aims
to design a mechanized formalization and a verified interpreter for (a subset of) ANSIBLE, while WP3 does
the same for CONCERTO and associated tools. In WP4 the formally specified and verified transformation from
ANSIBLE to CONCERTO will be produced. Work packages address the objectives of FOR-COALA as follows:
WP2 and WP3 implement Obj1; WP2, WP3, and WP4 implement Obj2; WP0, WP1 and WP2 implement
Obj3.

7

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

1.3.2 Risk Management

From an organizational point of view, the project team is comprised of two partners and six persons including
two permanent researchers. The coordinator, Hélène Coullon and Frédéric Loulergue have previously worked
together to write a survey on verified reconfiguration [1] successfully published to ACM Computing Surveys,
a prestigious journal. The subject of the publication is directly related to FOR-COALA, hence a good level of
expertise is guaranteed for the two permanent members. The project coordinator will organize both virtual and
in-person meetings on a very regular basis, including bi-annual plenary meetings over a full day. The distance
from IMT to LIFO is reasonable and the travel is especially convenient by train with a direct train which takes
less than 3 hours. This makes additional in-person meetings easy to organize if needed. As a result, generic
risks related to collaborative projects seem limited.

Scientific and technical risks exist, they are inherent to any ambitious innovative project. The project
consortium and organization were chosen to reduce them. Indeed, the team gathers all the required expertise
for the project’s success (see Section 2.1). The order, duration, and required efforts of each work-package
were carefully identified in order to reduce those risks. Nonetheless, there remain a certain number of risks
related to each work-package that are described in Section 1.3.3 alongside discussions as to how their impact
is reduced. Important technical and organizational problems will be reported to the project coordinator. Should
some urgent issue arise, the problem will be discussed during dedicated online meetings quickly organized for
that purpose.

A general risk for FOR-COALA is that the semantics and verified tool are not usable in practice, limiting
the impact of the project. The two main causes may be that: the selected subset of ANSIBLE is not suited to
industrial use and that the formal semantics and verified interpreters and tools provide different results. To
limit the first cause, FOR-COALA includes an Advisory Board of DevOps experts and industrial users (see
Section 2.1), page 15), which will be consulted on a regular basis during the project and especially several
times during WP1. To limit the second cause, for each task where the outcome will be an executable verified
tool, we will test the result of the verified tools with respect to their production counterparts. If test results
are different, it may mean either that our semantics should be modified or that the production implementation
contains a bug. In the former case, we will correct the semantics and interpreter and in the latter case, we will
report the problem to the tool developers, as done in the past for the SmartFrog initiative [6]

1.3.3 Work-Packages

Work-Package 0: Management and dissemination (T0 – T0+48, led by IMTA)

Partner IMTA LIFO
Effort, person.month 8 5

WP0 is dedicated to project management and dissemination activities. It will be led by Hélène Coullon,
FOR-COALA project coordinator, whereas all partners will be involved. Project management actions include
preparing ANR reviews and monitoring the progress of scientific and technical work with respect to the project
road-map (see Gantt diagram shown in Fig. 3), and organization of progress meetings (every 6 months). WP0
is also in charge of risk management (see Section 1.3).

Another important task for WP0 consists of establishing the FOR-COALA consortium agreement during
the first year (before T0+12). WP0 also ensures the organization of technical means for the FOR-COALA

technical and dissemination activities. They include in particular designing and deploying a project website
containing usual news on publications and presentations, but also a technical “blog” to vulgarize and make
easy the understanding of some problems when using ANSIBLE. WP0 will also set up collaborative solutions,
including a dedicated GitHub/GitLab organization/group, to share the project documents and developments

8

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

between the consortium members. The team will heavily rely on collaborative digital tools to make each work-
package output continuously available to other work-packages, track issues, archive online discussions, etc.
The FOR-COALA dissemination activities are described in Section 3.

Deliverables
ID Name Resp. Kind Date
D0.a Public website & technical blog & collaborative tools IMTA Other T0+3
D0.b Consortium Agreement IMTA Other T0+12
D0.c Intermediate Report LIFO Report T0+24
D0.d Final Report IMTA Report T0+48

The deliverables include a public website presenting the FOR-COALA project, its consortium, and de-
liverables (D0.a), the consortium agreement (D0.b), and the mid-term (D0.c) and final (D0.d) ANR reports
providing an intermediate and final description of the project achievements. The website will also contain a
technical blog to illustrate and inform the community of some limitations, ambiguities in the Ansible language,
and some vulgarization articles on how we solve problems in FOR-COALA.

Risks and mitigation In general in collaborative projects, the risks in the administrative work-package include
problems related to a large number of partners in the consortium, not used to work together, partners abandoning
the project, and intellectual property issues. In FOR-COALA, we have only 2 partners, all of which are part
of large institutions. The two involved permanent researchers have been successfully working together for
several years, and all partners have preliminarily agreed that the verification tools developed during the project
will be made available as open source (the exact type of license will be decided in the consortium agreement).
Therefore, the risks related to this work-package are low. All technical and administrative issues or execution
delays, if any, will be quickly reported to the coordinator, and discussed with all partners in order to find
adequate solutions. To mitigate the potential risk of a delayed signature of the consortium agreement (planned
by T0+12), the preparation of the agreement will start immediately after the acceptance of the proposal.

Work-Package 1: Analysis of requirements and case studies (T0 – T0+9, led by LIFO)

Partner IMTA LIFO
Effort, person.month 6 8

The goal of this work package is to analyze the requirements with respect to the real-world case studies
provided and curated by all the partners. This will guide the prioritization of features to include in the formal
semantics of WP2 and WP3 and also the features that will be handled by the verified transformation of WP4.

Task 1.1: Ansible case studies (T0 – T0+6) Ansible Galaxy is a repository of reusable Ansible items. It
currently contains more than 30,000 roles and 2,500 collections. This offers a large variety of case studies.
Most of the items in this repository refer to code managed in a version control system. Thus the history of the
items is available. As a first step, we plan to mine Ansible Galaxy and related repositories to determine the
most used Ansible features. The outcome of the study will be a list of prioritized features to formalize. This list
will be discussed with our advisory board of industrial users. In a second step, we will use a frequent itemset
mining algorithm to obtain a set of coherent subsets of features for which there exist playbooks in Ansible
Galaxy using all the considered features. The first set of case studies which contain these coherent subsets
of features is called LCS. Other criteria may be used to reduce the number of possible candidates such as the
overall size of the case study and its popularity. The reduced list of candidate case studies will then be presented
to the advisory board to select the final set of case studies (denoted by FCS). FCS will be used to guide our
work in WP2 and WP4. LCS will be used for testing purposes.

9

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Task 1.2: Concerto case studies (T0 – T0+9) We perfectly know and control the semantics of Concerto.
Hence the difficulty will not be to understand how to cover its semantics, but rather to take the time to design
and code new use cases from real-world scenarios. We already have a few such scenarios and we plan to add
this set by manually translating a subset of the Ansible case studies to Concerto. This manual translation can
also be considered a preliminary work for WP4. The full set of Ansible case studies (FCS) will be translated to
Concerto using the translation tool of WP4.

Task 1.3: Formalization requirements (T0 – T0+6) This work package will also analyze more precisely the
requirements for the tool we will use to formalize the semantics, define and prove the correctness of interpreters
w.r.t. these semantics, and define and prove the correctness of transformations. Based on our experience, we
plan to consider the Coq [17] proof assistant and the Why3 [18] proof and verification environment. Gallina
is the specification language of Coq and WhyML the specification language of Why3. Gallina is a much
richer specification language than WhyML but in most cases users are required to write proof scripts in Coq
to prove properties. WhyML is mostly less expressive than Gallina (however, there are imperative features in
the programming part of WhyML which Gallina does not offer) but proofs are mostly automatic. In WhyML,
it may be necessary to write lemma functions which are a kind of annotations when proofs by induction are
needed. Both tools provide a way to extract compilable code (in particular OCaml code) from specifications.
Coq extraction mechanism only handles a pure functional subset of OCaml and Why3 handles a subset of
OCaml which includes imperative aspects and exceptions. Why3 is able to translate WhyML code to Gallina.
One use case is to prove lemmas not handled by automated provers in Why3, it is also possible to generate
Gallina code from WhyML and prove the lemmas with Coq. In the context of FOR-COALA, we could specify
the semantics and implement and proof the correctness of interpreters using imperative features using Why3
while using Coq for proving properties of these semantics and implementing and proving the correctness of
program transformations. In this task, we will experiment several formalization and proof approaches with Coq
and Why3 on a semantics and verified interpreter for a small, but representative, language. This will guide the
choice of a formalization approach for WP2, WP3 and WP4.

Deliverables
ID Name Resp. Kind Date
D1.a Dataset from Ansible Galaxy LIFO Dataset T0+6
D1.b Ansible and Concerto case studies IMTA Repository T0+9
D1.c Formalization requirements LIFO Report T0+6

The main deliverable of this work-package is (D1.b) a repository of curated case studies for Ansible and
Concerto. A byproduct is a dataset on the analysis of Ansible features found in Ansible Galaxy (D1.a). A report
(D1.c) will explore design choices in formalizing a small semantics and an interpreter using Coq or Why3 or
both as well as a few proofs of properties with Coq and Why3.

Risks and mitigation Possible risks of this work-package are:

• a difficulty or delay in identifying representative sets of industrial case studies,
• the small-scale experiments in formalization may not scale in WP2, WP3, and WP4.

Our methodology relies on both an automated analysis and expert feedback from the advisory board which
limits the risk the sets will be non-representative. The automated analysis will leverage tools already used in
the analysis of Ansible Galaxy which limits the risk of technical difficulties and delays.

We have experience in developing and maintaining Coq formalizations reaching 50,000 LoC and we ex-
pect the formalizations of FOR-COALA to be in the same order of magnitude thus limiting the risk related
to the formalization scale in the case of Coq. There are quite large verification projects in Why3 but, to our
knowledge, all of them are program verification projects. There are only a few verification efforts related to

10

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

inductively defined predicates formalizing semantics and their sizes are in the few thousand LoC. However, as
it is possible to translate WhyML to Gallina, even if choose WhyML as our default specification language and
scaling problems arise with Why3, we could fall back to Coq.

Work-Package 2: Formalization of a subset of ANSIBLE (T0+6 – T0+42, led by LIFO)

Partner IMTA LIFO
Effort, person.month 12 33

Task 2.1: Mechanized ANSIBLE semantics (T0+6 – T0+36) Unlike CONCERTO, to our knowledge, there
does not exist any formal semantics of a subset of ANSIBLE, mechanized, or on paper. As mentioned in
Section 1.2, there are papers with contributions on the quality and defects of IaC programs that contain some
informal model of ANSIBLE or that highlight aspects of ANSIBLE we need to formalize with care. Our goal is
to obtain a semantics that will be not only enough for WP4 but that could be used as a foundation for further
verification efforts in the ANSIBLE ecosystems.

Besides covering the largest possible subset of ANSIBLE, the main challenges we anticipate are:

• finding the right level of abstraction. In particular, as tools such as ANSIBLE do change the state of the system
they manage, we will take particular care in designing the semantics in such a way that it can handle different
granularity in systems abstractions. This would allow the semantics to be used in various verification efforts
beyond FOR-COALA.

• handling both the commonality and the diversity of features. For example, there are several ANSIBLE mod-
ules of package management systems. We may not formalize all of them but our formalization should be
flexible enough so that common aspects should not be duplicated while allowing us to express the specific
aspects of each package manager system and be amenable to formalizing additional package management
systems we might add after the project.

• designing the right modular architecture. We will formalize the modules as prioritized in WP1 but we
will also make our best effort to make the formalization easily extensible in the future to take into account
additional modules and features of ANSIBLE which are very different than the modules we have in the list
of WP1.

It is important to put formal semantics to use to check it does express meaningful aspects. One use is
to verify the properties of the semantics. In the context of infrastructure as code, one important property is
idempotency, i.e. the execution of an IaC program yields a state of the system that remains unchanged if the
program is executed again. We will prove the idempotency of the subset of ANSIBLE we formalize. Another
use is to define an interpreter for the considered code and prove its correctness with respect to the semantics.

Task 2.2: Verified ANSIBLE interpreter (T0+18 – T0+42) The goal of this task is to implement an interpreter
of ANSIBLE playbooks in the specification language of the chosen specification and verification tool and to
verify its correctness with respect to the semantics defined in Task 2.1 as inductive predicates. As the execution
of ANSIBLE playbooks is sequential, proving the correctness with respect to the semantics should not be very
difficult.

All components of the interpreter may not be implemented in Coq or Why3. For example, parsing YAML
files may be done with a Gallina program working on strings (using Menhir for Coq [19]) but reading from a
file cannot directly be written in Gallina.

For a fully executable interpreter, the code extracted from the formal development of Task 2.2 should be
completed, in particular for IO operations. Once this is done, the verified interpreter will be tested against
the ANSIBLE production implementation on the large set of case studies LCS from WP1. Any mismatch will
indicate either a faithfulness problem in the formalization, a bug in the non-verified part of our interpreter, or

11

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

possibly a bug in the production implementation. In the first case, it provides feedback on Task 2.1, in the
second case on Task 2.2, and in the last case, it has an impact on the quality of the production implementation
of ANSIBLE.

Deliverables
ID Name Responsible Kind Date
D2.a ANSIBLE semantics LIFO Repository T0+24, T0+36
D2.b Verified interpreter LIFO Repository T0+39
D2.c Evaluation of the verified interpreter IMTA Report T0+42

The two main deliverables are the formal semantics of the subset of ANSIBLE we will consider (D2.a) and
the verified interpreter for this subset (D2.b). There will be an intermediate version of the deliverable (D2.a) at
T0+24 which will be subsumed by the final version at T0+36. The design and development of the semantics and
interpreter will proceed incrementally which will allow to work on the two tasks T2.1 and T2.2 in parallel for a
large part of the duration of these tasks. The evaluation effort will start as soon as the interpreter is rich enough
to execute some of the selected case studies. The last deliverable is an evaluation of the verified interpreter with
respect to the production implementation of ANSIBLE (D2.c).

Risks and mitigation

• Mechanized formalization is time-consuming. One difficulty is that there are often many ways to formalize
the same concept. Usually, each way is well-suited to some classes of proofs which are not easy to deter-
mine before working on the proofs. In FOR-COALA, this aspect has a rather low risk, especially with the
preliminary study of WP1. Another risk is related to the number of ANSIBLE features to formalize. As the
list of features to formalize obtained in WP1 will be with priorities, we could adapt the number of considered
features depending on our progress.

• A common risk of mechanized formalizations is that a mechanized artifact does not faithfully formalize
a hand-written implementation, which decreases the trust users can have in the implementation. In FOR-
COALA, this risk is mitigated by the fact we will implement verified interpreters that we can test with
respect to ANSIBLE implementation, in particular on the set of case studies from WP1.

Work-Package 3: Formalization of CONCERTO and associated tools (T0+6 – T0+42, led by IMTA)

Partner IMTA LIFO
Effort, person.month 28 8,7

The goal of this work package is to mechanically formalize the semantics of CONCERTO and associated
tools and to provide associated interpreter and tool implementations verified correct with respect to their se-
mantics. This work package will produce a certified CONCERTO suite.

Task 3.1: Mechanized formal semantics of CONCERTO (T0+6 – T0+12) First, CONCERTO has already been
manually formalized in [8]. This formalization has some limitations though. First, the formalization is manual
and its executability has not been verified with an interpreter. Second, some important language constructions
of CONCERTO have been omitted in this formalization: a subpart inherited from Python in the CONCERTO

implementation. The goal is not to formalize Python or a large subset of Python but rather to identify a number
of language features that are enough to express the semantics of actual CONCERTO case studies. These features
include variables and loops for instance. In this first task, we will mechanically formalize CONCERTO. This
formalization will include the set of constructions that are required within CONCERTO but not yet included in
the manual formalization.

12

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Task 3.2: Mechanized formal semantics of the synthesis tool (T0+9 – T0+21) Second, CONCERTO is a
coordination execution model that offers a reconfiguration language to dynamically: transition from one state
of a component lifecycle to another; and change the set of component instances and their connections (i.e.,
the assembly of the distributed software system). Hence, CONCERTO itself cannot be considered a declarative
language as the set of instructions to reach the desired state has to be written. CONCERTO is imperative (i.e.,
procedural). For this reason, CONCERTO has been extended with a synthesis tool [9] that, from a simple
and partial goal (i.e., the desired state), generates the correct reconfiguration program. This tool is based on
an algorithm made of a small exhaustive search, a scheduling problem solved by the z3 SMT solver, and a
set of correct rewriting rules to simplify the obtained program. Hence, the generated program is correct-by-
construction. However, this tool (i.e., its input language and its algorithm) has not been formalized either
manually or mechanically. This is the goal of this task.

Task 3.3: Verified implementation of the CONCERTO suite (T0+12 – T0+42) Finally, from the formalized
semantics of the CONCERTO suite, a verified interpreter of CONCERTO programs and a verified implementation
of the synthesis tool will be proved correct with respect to the semantics. As the execution of CONCERTO

programs is parallel, proving the correctness of the interpreter and synthesis tool with respect to their semantics
has additional challenges compared to task 2.2. The outcome of this task being verified executable code, we
will, as we do in Task 2.2, test them with respect to the non-verified implementation of the CONCERTO suite.

Deliverables
ID Name Resp. Kind Date
D3.a Mechanized semantics of CONCERTO IMTA Repository T0+12
D3.b Mechanized semantics of the synthesis tool IMTA Repository T0+21
D3.c Verified interpreter of CONCERTO IMTA Repository T0+24
D3.d Verified implementation of the synthesis IMTA Repository T0+39
D3.e Evaluation of the verified implementations LIFO Report T0+42

The main deliverables are the formal semantics of the CONCERTO suite (D3.a and D3.b) and a verified
implementation of this suite (D3.c and D3.d). The last deliverable (D3.e) will report on the evaluation of the
verified suite implementation with respect to the Python implementation of the CONCERTO suite through tests.

Risks and mitigation This work-package shares the risks and mitigation of WP2. A formal semantics of the
core of CONCERTO exists on paper which lowers the overall risk. There are additional risks related to the fact
that CONCERTO is a language with parallel constructs and concurrency. These risks are however low because
we have experience in formalizing and verifying concurrent and parallel programs [20, 21, 22, 23].

Work-Package 4: Semantics preserving transformations (T0+30 – T0+48, led by IMTA)

Partner IMTA LIFO
Effort, person.month 12 11,5

In different works, Concerto has been compared in terms of efficiency to ANSIBLE [24]. The goal of
this comparison was to highlight that introducing more parallel constructs in a DevOps language could have
an important impact on duration when deploying complex software systems. For example, when deploying
OpenStack a gain of up to 70%, and when deploying a Kubernetes cluster a gain of up to 40% has been observed
by using CONCERTO rather than ANSIBLE. However, this manual transformation has a high human cost.
Either the person in charge of this transformation knows the initial ANSIBLE playbooks but has to increase her
expertise in CONCERTO, or knows CONCERTO but does not know the details of the initial ANSIBLE playbooks.

13

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

In both cases, it is a long and complex task. Our goal in this work-package is to design a verified and automated
semantics-preserving transformation from ANSIBLE to CONCERTO.

Task 4.1: Design and implementation of the transformation (T0+30 – T0+42) The first task is to design,
formalize, and implement the transformation. Multiple challenges have to be addressed to accomplish this task.
First, CONCERTO and ANSIBLE do not cover the same functionalities. On the one hand, ANSIBLE is a tool on
top of SSH that offers low-level modules to replace bash commands, not offered by CONCERTO. On top of this,
ANSIBLE adds a coordination level to apply operations in the right order (sequential order). On the other hand,
CONCERTO focuses on the coordination level, it adds parallel and concurrency constructs, and also explicit
dependencies that expose a partial order of tasks compared to ANSIBLE. Moreover, CONCERTO is enhanced
by a synthesis tool to make it declarative which does not exist in ANSIBLE. The intersection between both is
clearly at the coordination level. The first challenge is to exactly identify and extract this semantics intersection
from WP2 and WP3.

Second, as it is, a transformation from ANSIBLE to CONCERTO can only be done without any parallelism
and concurrency in the resulting CONCERTO program because of the lack of explicit dependencies and partial
order expressiveness in ANSIBLE. We plan to have a three-level procedure for the transformation: (1) we strictly
keep the sequential order specified within ANSIBLE playbooks and roles and prove the semantics preserving
transformation; (2) we try to detect and make explicit some hidden dependencies within ANSIBLE playbooks
and roles (e.g., Jinja2 templates and variables) to relax the sequential order while preserving the results; (3)
we optionally build and formalize a set of annotations or a small DSL on top of ANSIBLE to explicitly express
dependencies and partial orders, thus switching to an optimal CONCERTO code.

Task 4.2: Verification of the transformation (T0+36 – T0+48) Once formally and mechanically specified,
the semantics preserving transformation from ANSIBLE to CONCERTO can be implemented and verified with
respect to the semantics. This task should not be too difficult or long if having the semantics of WP2 (ANSIBLE),
WP3 (CONCERTO), and task 4.1. However, this work may induce some changes or limitations in WP2 and WP3
that could require a few iterations. As the executable artifact of WP2 and WP3, the transformation will also
be evaluated. Of course, there is not any non-verified transformation to test the verified one against. We will
compare the execution of the transformed program with respect to the original ones. As mentioned in WP2,
there are almost always unverified parts to add to obtain a compilable program from code extracted from a
formalization. While the proof of correctness will ensure the core of the transformation does not contain any
bugs, the non-verified parts (basically IO aspects) need to be tested.

Deliverables
ID Name Resp. Kind Date
D4.a Executable ANSIBLE-CONCERTO transformation IMTA Repository T0+42
D4.b Verification of the transformation LIFO Repository T0+45
D4.c Evaluation of the transformation IMTA Report T0+48

Risks and mitigation

• The risks are related to the usual difficulties of compiler verification with the added problem that the target
language has a non-deterministic execution order. The literature on formally verified compilation is rich and
we have experience in verified program transformation in various contexts (e.g. [22, 25]) which limits these
risks.

• As WP2 and WP3, if we estimate, while working on the verified translation, that the effort to handle the full
subset of ANSIBLE of WP2 or full Concerto of WP3 is not compatible with the duration of the project, we
can consider a smaller subset of ANSIBLE and a subset of Concerto.

14

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

2 ORGANIZATION AND IMPLEMENTATION OF THE PROJECT

2.1 SCIENTIFIC COORDINATOR AND ITS CONSORTIUM

The FOR-COALA scientific coordinator is Hélène Coullon, associate professor at IMT Atlantique and member
of the STACK research team, a mixed team between Inria and Orange, and also a team of the LS2N UMR lab-
oratory. She was also a 20% adjunct professor at the University of Tromsø (Norway) between 2020 and 2022.
Her expertise is programming models in the context of distributed infrastructures and systems. In particular, she
is interested in the configuration, deployment, reconfiguration, and self-adaptation of large and complex dis-
tributed software systems. She leads the design of Concerto [8, 7], a component-based reconfiguration model,
and associated tools [9, 26]. She is a WP leader in the ANR PRCE project SeMaFoR (Self Management of
Fog Resources, ending in 2025) [27], as well as a WP leader in the project TARANIS of the PEPR Cloud
(2023-2030). She is also involved as a partner in the “Défi” project between OVH and Inria to compare the ex-
ecution and energy consumption of reconfiguration procedures between CONCERTO and ANSIBLE, and finally
in the OTPaaS project (ending in 2025), a collaborative project including many industrial partners. She is the
vice-president of the French ACM SIGOPS group and co-chairs the YODA (trustworthY and Optimal Dynamic
Adaptation) national working group of the GdR GPL. Finally, she is co-chair of the research group CYCLOPS

(deployment and reconfiguration) of the Inria/Orange joint laboratory. She will devote 50% of her research
time to FOR-COALA.

Consortium. In addition to IMT Atlantique, the consortium consists of Université d’Orléans, Laboratoire
d’Informatique Fondamentale d’Orléans (LIFO). Also, it is worth noting that participants in the consortium
have already successfully published together [1]. It offers the guarantee of fruitful cooperation between the
FOR-COALA partners. The partners are also very complementary in terms of their respective areas of strong
expertise: design of models for distributed systems deployment and reconfiguration (IMT Atlantique), and
formalization using a proof assistant including languages semantics and program transformations (LIFO) [28,
25] and formal methods in general [23]. Both applied their expertise successfully in concrete use cases. Each
partner is knowledgeable in the skills of the other partner which will guarantee a smooth collaboration.

IMT Atlantique participates in the project through the STACK Inria team. Hélène Coullon will lead WP0,
WP3, WP4, and will contribute to all other work packages together with a PhD student and an intern to be hired
for the project.
Université d’Orléans participates in the project through the Languages Modeling and Verification (LMV)
team of LIFO. Frédéric Loulergue will be involved at 40% of this research time and will lead WP1 and WP2.
He will also contribute to all other WPs together with part-time engineers, interns, and a postdoctoral researcher
to be hired for the project.

Advisory Board. To collect external feedback and suggestions on a regular basis, we will create an Advisory
Board of DevOps experts and industrial users including: Jérémie Monsinjon of OVH, Sébastien Bolle of Orange
Labs, and Baptiste Jonglez of the cfarm volunteer-run project7 supported by Tetaneutral and and SPI8. Between
the acceptance of the proposal and the start of FOR-COALA, we plan to invite other experts and industrial users
to reach a board of 5-6 persons.

Involvement of project coordinator and partner leaders in on-going projects. The involvement of the sci-
entific coordinator and partner scientific leaders in regional, national, and international ongoing projects is
illustrated in Fig. 4. In this figure, the project fundings are restricted to either IMTA or the LIFO, excluding the
funding of their partners in these projects. The projects fundings associated to Hélène Coullon involve other
researchers of IMTA. Assuming FOR-COALA will start the 1st of January 2025, the column “person.month”

7https://portal.cfarm.net/
8https://tetaneutral.net, https://www.spi-inc.org/projects/cfarm/

15

https://portal.cfarm.net/
https://tetaneutral.net
https://www.spi-inc.org/projects/cfarm/

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Researcher Pers.
month

Call, funding
agency, grant allo-
cated

Projet’s title Coordinator Start–End

H. Coullon 15 (15) PEPR 730kC PEPR Cloud Taranis A. Lebre 10/23–09/30
H. Coullon 12 (1) ANR PRCE 230 kC SeMaFoR T. Ledoux 03/21–02/25
H. Coullon 3 (0) BPI France 1,2MC OTPaaS CEA 10/21–04/25
H. Coullon 1.5 (0) Défi OVH/Inria 55ke Frugal Cloud L. Lefevre 10/21–09/25
F. Loulergue 18 (6) ANR PRCE, 107kC CoMeMoV F. Loulergue 01/23–12/25
F. Loulergue 3 (0) Région CVL, 25kC SIOMediC P. Clemente 12/22–12/24
F. Loulergue 3 (1) Région CVL, 51kC AcceptAlgo B. Boulu-Reshef 01/24–12/25

Figure 4: Involvement of the scientific coordinator and partner leaders in on-going projects. Assuming FOR-
COALA would start the 1st of January 2025, the column “person.month” indicates the total effort planned in
the given project as well as the remaining effort from this date (in parenthesis)

indicates the total effort planned in the given project as well as the remaining effort from this date (in parenthe-
sis).

2.2 IMPLEMENTED AND REQUESTED RESOURCES TO REACH THE OBJECTIVES

Partner 1: IMT Atlantique

Staff expenses IMT researchers will devote 66 person.month to the project including 24 person.month of the
scientific leader (50% of her research time), 36 person.month for a PhD student (138,000e), and 6 person.month
for Master 2 internship (4,200e). The PhD student will be involved within all work-packages of FOR-COALA

and will mainly contribute to WP3 and WP4. However, contributing to WP4 will require a good level of
expertise in WP2 and more generally in Ansible. This means that the PhD student will also actively work on
WP2 and collaborate with other members of the project. It is also likely that the PhD student will sporadically
contribute to WP0 and WP1 during the three years. The intern will ideally be the same person as the PhD
student. The goal of the internship will be to gain expertise in both Ansible and Concerto and to have a first
small contribution to WP3 before starting the PhD.

Instruments and material costs IMT will acquire one laptop and one screen (3,000e) dedicated to the PhD.

Building and ground costs, outsourcing/subcontracting None

General and administrative costs & other operating expenses Travel costs (22,500e) include expenses for
(1) travels from Nantes to Orléans, with one travel per year for two persons (4,500e); and (2) travels for par-
ticipation in three to four top-tier international conferences (10,000e), two national conferences or workshops
including GDR meetings (3,000e). We also plan to partly cover expenses for the organization of a FOR-COALA

workshop and meetings with the advisory board (5,000e). General costs 24,316.50e include administrative
management and structure costs. This amount is within the structure costs allowed by the ANR.

Partner 2: LIFO – Université d’Orléans

Staff expenses LIFO will devote 56.2 person.month to the project including 19.2 person.month of the sci-
entific leader (40% of his research time), 24 person.month of a post-doctoral researcher (99,317.05e). Two
master’s students will also be part of the project. One student during the two first years of the project, and
one during the two last years. During the first year of their Master’s program, they will be offered a 3 months
summer internship, and during the second year (in the research track) they will be offered a 6 months internship

16

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

Partner IMT Partner LIFO

Staff expenses 224,853.36e 254,516.78e
Instruments and material costs (including the
scientific consumables)

3,000.00e 3,000.00e

Building and ground costs – –
Outsourcing / subcontracting – –
General and Travel costs 22,500.00e 16,200.00e
administrative costs &
other operating expenses

Administrative manage-
ment & structure costs

24,316.50e 21,082.07e

Sub-total 274,669.86e 294,798.85e
Requested ANR support 192,016.50e 166,475.65e
Total requested ANR support 358,492.15e

Figure 5: Requested means by item of expenditure and by partner

(basically working on their Master’s thesis). In our Master’s program, the defense of the thesis occurs at the end
of June. As most PhD funding starts in October, we will hire them as research engineers for 2.5 months each.
The cost of the internships is 12,222e and the cost of the 5 person.month of research engineer is 14,654.53e.

All members of the LIFO team will contribute to WP0, in particular to the blog of the project. The post-
doctoral researcher will contribute mainly to WP2 but also participate in WP3. The first Master’s student will
work before T0+24 and will mainly contribute to WP2 but also get familiar with ANSIBLE by contributing to
the study of ANSIBLE in WP1. The second Master’s student will work after T0+24 and will mainly contribute
to WP4. However, as WP4 relies on the semantics of ANSIBLE (WP2) and CONCERTO (WP3), this second
Master’s student will start by contributing to these work-packages.

Instruments and material costs LIFO will acquire a powerful laptop dedicated to development (3,000e).

Building and ground costs, outsourcing/subcontracting None

General and administrative costs & other operating expenses Travel and registration costs of 16,200e
include expenses of 13,000e for participation in 4 leading international conferences (1 per year): 2 outside
Europe and 2 in Europe, as well as 3 national conferences, 4 national scientific workshops (most probably
of the GdR GPL), and expenses of 2,200e for project meetings in Nantes (6 meetings but 11 two-day stays
in Nantes as several members of the LIFO team will participate). During the project, two meetings will be
organized in Orléans. General costs also include administrative management and structure costs of 21,082.07e
(14.5% of the other costs). This amount is within the structure costs allowed by the ANR for a public university.

Requested resources by item of expenditure and by partner: see Fig. 5 All in all, the complete cost of the
project is 569,468.71e, and the FOR-COALA consortium kindly asks for 358,492.15e of ANR funding.

3 IMPACT AND BENEFITS OF THE PROJECT

Scientific impact and dissemination. From a scientific standpoint, the FOR-COALA project results will pro-
vide three main contributions:

• a new mechanically formalized and certified DevOps configuration management tool that covers a subset of
ANSIBLE, the currently most used DevOps tool;

• a mechanically formalized and certified reconfiguration tool that covers the CONCERTO academic model;

17

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

• a semantics preserving transformation to switch from ANSIBLE to CONCERTO.

The scientific impacts of these contributions are as follows. First, FOR-COALA is, as far as we know, the
first project to contribute to formally verified DevOps tools which offers strong and mechanized guarantees
at the whole language level, true for any given program. This is complementary to tools targeting the quality
improvement of the user codes.

The formalized semantics of ANSIBLE will initially be a selected subset of ANSIBLE (in particular a subset
of ANSIBLE modules) that could be easily enlarged after the project lifespan. The mechanized formal semantics
of ANSIBLE will be designed in a modular way and in such a way that the level of abstraction at which the
system being configured is considered could be adapted to other verification needs than the needs of FOR-
COALA. The impact can therefore be important as these semantics could be used in further formalization
and verification efforts, for example to verify the correctness of static analysis tools of ANSIBLE programs,
refactoring of ANSIBLE programs, provenance tracking for debugging [29] or security [30], etc. We envision
that the semantics of ANSIBLE modules we will propose in FOR-COALA will be flexible enough to play the
role of specifications for a possible effort in the verification of the implementation of ANSIBLE modules.

Second, the academic tool CONCERTO offers native parallel and concurrent constructs for reconfiguration
that is more difficult to formalize and certify but of interest to companies to reduce the execution time of
deployments and maintenance procedures. FOR-COALA will solve this challenge.

Finally, the transformation mechanisms, which will also be mechanically formalized and certified, will
offer a way for DevOps users to semi-automatically and safely transform their infrastructure codes towards an
academic tool with better efficiency.

We plan to publish at the crossroads of two different domains. First, as contributing to DevOps and recon-
figuration languages, we plan to publish in the Software Engineering (SE) and languages domains, as already
done by partners [31]. Some high-ranking SE conferences with themes or tracks related to DevOps are, for
instance, ICSE, SANER, ASE, ESEC/FSE. Second, as contributing to applied formal methods we also target
conferences such as FM, iFM [26], SEFM [23], ITP [20], CPP, the federated conferences ETAPS [9] or Dis-
coTec, etc. Note that if developing our work to some specific use cases, the distributed system community
could also be interested in our work, such as CCGrid where the project leader has already published about
CONCERTO [7]. International journals such as FAC, JSS, TSE, TOSEM, JLAMP, etc. will also be targeted for
extended contributions.

Valorisation strategy and industrial benefits. Our goal is to have an impact on the DevOps community. Our
chosen strategy is to build our contributions according to the advice of multiple partner companies (advisory
board) as well as from the open-source community. We also plan to build our initial dataset of ANSIBLE

features from statistical mining from the public repository ANSIBLE Galaxy. We think that our contributions
could be of interest to many companies using ANSIBLE that handle critical software systems evolution through
Infrastructure-as-code and would like to have guarantees, but also many companies interested in speeding up
their ANSIBLE codes.

To build an open-source community associated with our tools, we plan to participate in and give talks to
DevOps major events such as “Config Management Camp”, “KubeCon”, and “OpenInfra Summit” for instance.
We also plan to build a technical blog to explain the ambiguities of ANSIBLE and efficiency comparison with
CONCERTO to illustrate the interest of our project. Finally, we plan to submit at least one vulgarization paper
related to our contributions. It’s worth noting that it is difficult to sustain an open-source community with non-
permanent resources such as those funded by the ANR. Partners will therefore study how to invest longer-term
efforts in this community. The STACK team, for example, has a permanent research engineer dedicated to the
transfer to open source.

Finally, the initial goal of our advisory board is to help us restrict our study to a subset of ANSIBLE features
in WP1. However, it is also possible that some members of the advisory board become users of our certified

18

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

ANSIBLE and CONCERTO, or use our verified transformation tool to easily try CONCERTO, or even contribute
to our open source projects.

Education. The two permanent researchers of FOR-COALA are also professors in their respective host insti-
tutions (IMT Atlantique and Université d’Orléans). In this context, they give several types of courses, as part
of Master’s degree programs or as speakers in summer schools dedicated to young researchers, on the main
scientific and technical domains of the project: e.g., DevOps, Cloud, formal methods. FOR-COALA will con-
tribute to a finer-grain understanding of ANSIBLE semantics. The ambiguities of these semantics can then be
taught to students so that they can write better-quality playbooks. Furthermore, thanks to FOR-COALA, it will
be possible to raise the awareness of students to the importance of formal semantics, mechanized semantics,
and verification in DevOps and Cloud courses, which represents interesting knowledge for companies.

4 REFERENCES RELATED TO THE PROJECT

[1] H. Coullon, L. Henrio, F. Loulergue, and S. Robillard. “Component-Based Distributed Software Recon-
figuration: A Verification-Oriented Survey”. In: ACM Comput. Surv. (2023). DOI: 10.1145/3595376.

[2] H. S. Gunawi et al. “Why Does the Cloud Stop Computing? Lessons from Hundreds of Service Outages”.
In: ACM Symposium on Cloud Computing. 2016. DOI: 10.1145/2987550.2987583.

[3] X. Leroy. “Formal verification of a realistic compiler”. In: Commun. ACM 52.7 (2009), pp. 107–115.
DOI: 10.1145/1538788.1538814.

[4] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. “A Formally-Verified C Static Analyzer”.
In: SIGPLAN Not. (2015). DOI: 10.1145/2775051.2676966.

[5] R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro. “Aeolus: a Component Model for the Cloud”.
In: Information and Computation 239 (Jan. 2014), pp. 100–121. DOI: 10.1016/j.ic.2014.11.002.

[6] P. Anderson and H. Herry. “A Formal Semantics for the SmartFrog Configuration Language”. In: J.
Netw. Syst. Manag. 24.2 (2016), pp. 309–345. DOI: 10.1007/s10922-015-9351-y.

[7] M. Chardet, H. Coullon, and C. Pérez. “Predictable Efficiency for Reconfiguration of Service-Oriented
Systems with Concerto”. In: CCGrid. IEEE, 2020. DOI: 10.1109/CCGrid49817.2020.00-59.

[8] M. Chardet, H. Coullon, and S. Robillard. “Toward safe and efficient reconfiguration with Concerto”. In:
Sci Comput Program (2021). hal: hal-03103714. DOI: 10.1016/j.scico.2020.102582.

[9] S. Robillard and H. Coullon. “SMT-Based Planning Synthesis for Distributed System Reconfigurations”.
In: Fundamental Approaches to Software Engineering (FASE). 2022. DOI: 10.1007/978- 3- 030-
99429-7_15.

[10] K. Ikeshita, F. Ishikawa, and S. Honiden. “Test Suite Reduction in Idempotence Testing of Infrastructure
as Code”. In: Tests and Proofs. Ed. by S. Gabmeyer and E. B. Johnsen. Cham: Springer International
Publishing, 2017, pp. 98–115. ISBN: 978-3-319-61467-0.

[11] R. Opdebeeck, A. Zerouali, and C. De Roover. “Smelly Variables in Ansible Infrastructure Code: Detec-
tion, Prevalence, and Lifetime”. In: 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR). 2022. DOI: 10.1145/3524842.3527964.

[12] R. Shambaugh, A. Weiss, and A. Guha. “Rehearsal: A Configuration Verification Tool for Puppet”. In:
SIGPLAN Not. 51.6 (2016). DOI: 10.1145/2980983.2908083.

[13] R. Opdebeeck, A. Zerouali, and C. De Roover. “Andromeda: A Dataset of Ansible Galaxy Roles and
Their Evolution”. In: IEEE/ACM 18th International Conference on Mining Software Repositories (MSR).
2021. DOI: 10.1109/MSR52588.2021.00078.

[14] W. Fu, R. Perera, P. Anderson, and J. Cheney. “muPuppet: A Declarative Subset of the Puppet Configu-
ration Language”. In: ECOOP. LIPIcs. 2017. DOI: 10.4230/LIPIcs.ECOOP.2017.12.

[15] N. Jeannerod, C. Marché, and R. Treinen. “A Formally Verified Interpreter for a Shell-Like Programming
Language”. In: VSTTE. Vol. 10712. LNCS. Springer, 2017. DOI: 10.1007/978-3-319-72308-2_1.

19

https://doi.org/10.1145/3595376
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1016/j.ic.2014.11.002
https://doi.org/10.1007/s10922-015-9351-y
https://doi.org/10.1109/CCGrid49817.2020.00-59
https://hal.science/hal-03103714/
https://doi.org/10.1016/j.scico.2020.102582
https://doi.org/10.1007/978-3-030-99429-7_15
https://doi.org/10.1007/978-3-030-99429-7_15
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1145/2980983.2908083
https://doi.org/10.1109/MSR52588.2021.00078
https://doi.org/10.4230/LIPIcs.ECOOP.2017.12
https://doi.org/10.1007/978-3-319-72308-2_1

AAPG2021 FOR-COALA PRC
Coordinated by: Hélène Coullon 48 months e358,492.15
H.3 – Sciences et génie du logiciel – Réseaux de communication multi-usages, infrastructures de hautes performances

[16] B. Becker, N. Jeannerod, C. Marché, Y. Régis-Gianas, M. Sighireanu, and R. Treinen. “Analysing in-
stallation scenarios of Debian packages”. In: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Springer, 2020. DOI: 10.1007/978-3-030-45237-7_14.

[17] The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr.
[18] J. Filliâtre and A. Paskevich. “Why3 - Where Programs Meet Provers”. In: Programming Languages and

Systems (ESOP). Springer, 2013. DOI: 10.1007/978-3-642-37036-6_8.
[19] J.-H. Jourdan, F. Pottier, and X. Leroy. “Validating LR(1) Parsers”. In: Programming Languages and

Systems (ESOP). Springer, 2012. DOI: 10.1007/978-3-642-28869-2_20.
[20] K. Emoto, F. Loulergue, and J. Tesson. “A Verified Generate-Test-Aggregate Coq Library for Parallel

Programs Extraction”. In: Interactive Theorem Proving (ITP). Springer, 2014. DOI: 10.1007/978-3-
319-08970-6_17.

[21] A. Blanchard, N. Kosmatov, M. Lemerre, and F. Loulergue. “conc2seq: A Frama-C Plugin for Verifi-
cation of Parallel Compositions of C Programs”. In: 16th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM). 2016. DOI: 10.1109/SCAM.2016.18.

[22] A. Blanchard, F. Loulergue, and N. Kosmatov. “From Concurrent Programs to Simulating Sequential
Programs: Correctness of a Transformation”. In: International Workshop on Verification and Program
Transformation. 2017. DOI: 10.4204/EPTCS.253.9.

[23] O. Proust and F. Loulergue. “Verified Scalable Parallel Computing with Why3”. In: Software Engineer-
ing and Formal Methods (SEFM). Springer, 2023. DOI: 10.1007/978-3-031-47115-5_14.

[24] M. Chardet, H. Coullon, C. Pérez, D. Pertin, C. Servantie, and S. Robillard. “Enhancing Separation
of Concerns, Parallelism, and Formalism in Distributed Software Deployment with Madeus”. working
paper or preprint. June 2020. URL: https://inria.hal.science/hal-02737859.

[25] D. Ly, N. Kosmatov, F. Loulergue, and J. Signoles. “Sound Runtime Assertion Checking for Memory
Properties via Program Transformation”. In: Form. Asp. Comput. (2023). DOI: 10.1145/3605951.

[26] H. Coullon, C. Jard, and D. Lime. “Integrated Model-checking for the Design of Safe and Efficient
Distributed Software Commissioning”. In: Integrated Formal Methods (iFM). LNCS. Springer, 2019.
DOI: 10.1007/978-3-030-34968-4_7.

[27] A. Alidra, H. Bruneliere, H. Coullon, T. Ledoux, C. Prud’Homme, J. Lejeune, P. Sens, J. Sopena, and
J. Rivalan. “SeMaFoR - Self-Management of Fog Resources with Collaborative Decentralized Con-
trollers”. In: SEAMS. IEEE, 2023. DOI: 10.1109/SEAMS59076.2023.00014.

[28] F. Dabrowski, F. Loulergue, and T. Pinsard. “A Formal Semantics of Nested Atomic Sections with Thread
Escape”. In: Comput Lang Syst Str (2015). DOI: 10.1016/j.cl.2015.04.001.

[29] W. Fu. “Semantics and provenance of configuration programming language µPuppet”. PhD thesis. Uni-
versity of Edinburgh, UK, 2019. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.
ethos.798916.

[30] P. Anderson and J. Cheney. “Toward Provenance-Based Security for Configuration Languages”. In: 4th
Workshop on the Theory and Practice of Provenance (TaPP). USENIX Association, 2012. URL: https:
//www.usenix.org/conference/tapp12/workshop-program/presentation/anderson.

[31] J. Philippe, A. Omond, H. Coullon, C. Prud’Homme, and I. Raïs. “Fast Choreography of Cross-DevOps
Reconfiguration with Ballet: A Multi-Site OpenStack Case Study”. In: IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2024. URL: https://hal.science/
hal-04457484.

20

https://doi.org/10.1007/978-3-030-45237-7_14
http://coq.inria.fr
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1109/SCAM.2016.18
https://doi.org/10.4204/EPTCS.253.9
https://doi.org/10.1007/978-3-031-47115-5_14
https://inria.hal.science/hal-02737859
https://doi.org/10.1145/3605951
https://doi.org/10.1007/978-3-030-34968-4_7
https://doi.org/10.1109/SEAMS59076.2023.00014
https://doi.org/10.1016/j.cl.2015.04.001
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.798916
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.798916
https://www.usenix.org/conference/tapp12/workshop-program/presentation/anderson
https://www.usenix.org/conference/tapp12/workshop-program/presentation/anderson
https://hal.science/hal-04457484
https://hal.science/hal-04457484

	Proposal's context, positioning and objective(s)
	Objectives and research hypotheses
	Position of the project as it relates to the state of the art
	Methodology and risk management
	Methodology
	Risk Management
	Work-Packages

	Organization and implementation of the project
	Scientific coordinator and its consortium
	Implemented and requested resources to reach the objectives

	Impact and benefits of the project
	References related to the project

